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Abstract
Many physical, chemical or sometimes financial phenomena are
considered as being only chaotic, or purely stochastic. However
a deeper understanding of the inherent nature of these processes
sometimes exhibits both deterministic and stochastic features.
The original idea of the paper is to find new models taking into
account both behaviors, stochastic and chaotic, in order to under-
stand and predict better the real physical phenomena, but also
to model data for different applications such as biomedical or fi-
nancial processes. The hypothesis about the approximation of the
real data by fractional Brownian motion has been validated based
on statistics, and the estimation of the Hurst exponent success-
fully characterized the agressiveness of the chaotic component.
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1 Introduction

The understanding of the dynamic behavior in real physical or industrial
system is of almost importance, for analysis, synthesis, prediction, etc. It is
sensible to consider that the behavior of many physical systems like phyto-
plankton, solar activity, oscillation of waves is a combination between chaotic
or stochastic processes, which can be successfully used for prediction of health
applications, meteorological phenomena etc [1, 2]. Many physical/ chemical
or sometimes financial phenomena are considered as being only chaotic ((ex.
Belousov - Zhabotinsky reaction) or purely stochastic (stock model price,
integral Ito, Black-Scholes model), but in fact they could be both determin-
istic and stochastic [3, 4, 7]. So it is of utmost interest to find new models
taking into account both behaviors, stochastic and chaotic, to understand
and predict better the real physical phenomena, but also to model data for
biomedical applications like (ECG, IRM).

The original idea in this paper is to juxtapose methods from stochastic
signal analysis (nonstationary Gaussian processes, statistics from limit theo-
rems by Nordin, Hurst exponent), and nonlinear (chaotic) dynamical system
analysis (phase portrait, phase delayed plot, Lyapunov exponents), to de-
velop a common methodology to analyze complex time series [5, 6, 8, 9].
Assuming that these two behaviors are inherently correlated, we are ana-
lyzing if there exists a correlation exists between the stochastic quantifiers
(Hurst exponent, Garch method,ARMA) and chaotic quantifiers (Lyapunov
exponents) [10, 11, 12]. To do that, different kind of stochastic-chaotic mixed
processes shall be modeled and analyzed from different points of view to be
developed. The idea is to find new models taking into account both be-
haviors, stochastic and chaotic, to understand and predict better the real
physical phenomena, but also to model data for different applications such
as biomedical or financial processes.

2 Proposed methodology

As classical approach, we assume a priory stochastic nature of time series
model and construct a mathematical model as a random process [?]. Hurst
exponent is defined like the estimate Ĥ of approximated fractional Brown-
ian motion for these time series. On the other hand, for some deterministic
systems, where the state is the solution of nonlinear differential or differ-
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ence equation like xn = X(tn), the behavior can be highly irregular and
extremely complex. In some cases the behavior is estimated like chaotic. In
the first approximation, we can determine the chaocity by the property of
the system to construct it’s trajectories in a bounded domain of the phase
space. Properties of dynamical systems which generate chaotic solutions,
have been widely discussed by the authors (results and references in the
monographs [13, 14]). The simplest example is an one-dimensional dynami-
cal system xn+1 = f(xn, µ) which generates chaotic solution for some func-
tions f and values of parameter µ . In particular, for logistic function f such
as xn+1 = µxn(1− xn), the plot of solution looks like white noise with some
values µ > 3.6. So, the problem statement the nature of time series analysis
nature is do the observed data have stochastic nature, or deterministic. Let
B (t), 0 ≤ t ≤ 1 be a fractional Brownian motion with Hurst exponent H.
Let’s consider the normalized increments

ξk = nH

(
B

(
k

n

)
−B

(
k − 1

n

))
∼ ℵ (0; 1) .

In the series of papers some limit theorems for the functions of these
increments were proven. Let’s denote

αk = nHB

(
k

n

)
=

k−1∑
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ξj .

There is a mean-square convergence:
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Let’s normalize the increments and assume:

zk = (σ̂)−1 nHyk =
0.8

R1n

yk .

3



We assume that the hypothesis T holds:

zk = ξk = nH

(
B

(
k

n

)
−B

(
k − 1

n

))
. (2)

Assume vk =
k−1∑
j=1

zj and calculate the statistical indexes:
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1

n

∑
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3
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(
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2

)
;
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1
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∑
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3
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(
0; 1

2

)
;

Dn =
1

n2H

∑
vkz

3
k , H ∈

(
1
2
; 1
)
.

(3)

If hypothesis T is true, then there is convergence:

An → −1.5 ; Bn → 3η ; Dn →
3

2
B2 (1) .

The decision about the hypothesis T is taken by comparing the actual values
of statistics with their limiting theoretical values. Let’s determine the devia-
tion from the limit value δ = |An + 1.5| for statistic An; the limit distribution
functions for statistics Bn, Dn:

F1 (x) = P {3η < x} = Φ
( x

3d

)
, F2 (x) = 2Φ

(√
2

3
x

)
− 1 , x > 0 ,

where Φ is Laplace function, d = (2H + 2)−0.5.
Hypothesis T is accepted, if

δ < β0 , |Bn| < β1 , H < 0.5 ; 0 < Dn < β2 , H > 0.5 , (4)

where β1, β2 are quantiles of distributions of F1, F2, corresponding to the
selected level of significance α = 0.1. Then,

β1 =
4.95√
2H + 2

, β2 = 4.08 .
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3 Results and discussion

The rate of convergence of statistics to the limit has been tested by numerical
experiment for the first example (“ideal case”):

zk =
(
σ̂−1
)
nH (X (k)−X (k − 1)) ; X (t) = σBH (t) ,

where the values of fractional Brownian motion were obtained by simulation.
The values of the statistical indexes An, Bn, Dn are shown in Table 1.

Table 1: Values of statistical indexes
H An Bn Dn β1
0.1 n = 200 −1.30 0.84 3.34

n = 1000 −1.32 2.63 3.34
0.2 n = 200 −1.21 0.81 3.20

n = 1000 −1.35 1.74 3.20
0.3 n = 200 −2.00 0.37 3.07

n = 1000 −1.10 0.50 3.07
0.4 n = 200 −0.55 1.26 2.96

n = 1000 −2.51 0.83 2.96
0.6 n = 200 1.75

n = 1000 1.03
0.7 n = 200 1.23

n = 1000 0.67
0.8 n = 200 1.05

n = 1000 0.52
0.9 n = 200 0.48

n = 1000 0.04

From Table 1, it follows that

|Bn| <
4.95√
2H + 2

= βB , H < 0.5 ; 0 < Dn < 4.08 = βD , H > 0.5 ,

and deviation δ, H < 0.5, is an increasing function of H (for H = 0.4, δ ≈ 1).
The second example is a deterministic logistic chaotic sequence xk+1 =

4xk (1− xk), k = 1, . . . , 1049. By procedure of estimation, we obtained Ĥ =
0.15. The statistical indexes are as follows: An = 0.6 > 0, |Bn| = 1.9 > βB =
0.08. Hypothesis T is rejected.
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The third example. Assume that the observed values are an additive
mixture of the deterministic chaotic and random sequences:

xk = uk + avk ,

where uk are the values of a dynamical system, vk are the values of a random
process. Sequences {uk}, {vk} are normalized by energy, therefore 1

n

∑
u2k =

1
n

∑
v2k = 1. Then, the value a determines stochastic share in the observed

data. In the example, uk = 4uk−1 (1− uk−1), vk = σBH

(
k
n

)
.

The stochastic sequence vk is generated with HfBm = 0.1–0.9. Table 2

shows estimate Ĥ of mixture and values of statistical indexes.

Table 2: Statistical indexes of mixture (a = 1, a = 2, n = 2000)
H H An Bn Dn β1
0.1 a = 1 0.6 −1.94 −0.07 −0.43 2.77

a = 2 0.1 −1.60 −0.40 −697 3.34
0.2 a = 1 0.15 −5.35 −15.3 −1095 3.26

a = 2 0.15 −3.19 −6.17 −652 3.26
0.3 a = 1 0.6 −2.54 −0.12 −0.56 2.77

a = 2 0.2 −5.0 −9.20 −477 3.19
0.4 a = 1 0.15 −4.50 −7.38 −920 3.26

a = 2 0.15 −2.33 −1.03 −475 3.26
0.6 a = 1 0.6 −0.91 −0.01 −0.20 2.77

a = 2 0.15 −4.0 15.8 −813 3.26
0.7 a = 1 0.6 −1.35 −0.03 −0.30 2.77

a = 2 0.1 −1.08 0.47 −470 3.34
0.8 a = 1 0.6 −1.37 −0.03 −0.30 2.77

a = 2 0.6 −0.68 −0.01 −0.15 2.77
0.9 a = 1 0.6 −1.45 −0.03 −0.32 2.77

a = 2 0.6 −1.91 −0.07 −0.42 2.77

The table data show the “aggressiveness” of the chaotic component in
relation to stochastic for HfBm ≥ 0.2. Inequalities (4) are not satisfied for
these values of fBm and character of the mixture determines the logistic se-
quence. The deviation of statistics from the limit values is the same as for the
“pure” fractional Brownian motion (Table 1) (for HfBm = 0.1). Persistence

(Ĥ > 0.5) of investigated time series (Dn < β2) means it has stochastic na-
ture; antipersistent (Ĥ = 0.1–0.2, An ≈ A, |Bn| < β1) admits the existence
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of the chaotic component (values tend to revert to a mean: an increase is
likely to be followed by a decrease and vice-versa).

4 Conclusion

The mixed chaotic-stochastic sequence has been successfully analyzed with
statistical tools. The increments of the sequence have been approximated
as a random variable, after pre-processing. The agressiveness of the chaotic
component has been estimated for the case of anti-persistant fBm approxi-
mation, and the statistical indexes have been identified.
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